The Taylor Series Expansion

Gary Schurman, MBE, CFA

November, 2017

One of the most relevant series in Economics and Finance is the Taylor Series Expansion. In this white paper we will use the power series to build a Taylor Series Expansion. To assist us in this task we will use the following Hypothetical problem...

Our Hypothetical Problem

Use a Taylor Series Expansion to answer the following questions given this equation for f(x):

$$f(x) = 100 - 2x + 4x^2 - 3x^3 \tag{1}$$

Question 1: What is the value of f(x) when x = 5?

Question 2: What is the value of f(x) when x = -3?

Building The Taylor Series Expansion

A Taylor series is a representation of a function f(x) as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point, which we will call point a. If f(x) is a polynomial then we can write that function as the following power series...

$$f(x) = \sum_{n=0}^{\infty} m_n (x-a)^n = m_0 + m_1 (x-a) + m_2 (x-a)^2 + m_3 (x-a)^3 + \dots + m_\infty (x-a)^\infty$$
(2)

To solve the equation above we need to determine the values of m_0 , m_1 , m_2 , etc. The general idea will be to process both sides of Equation (2) above and choose values of x so that only one unknown appears each time. With this plan in mind let's solve the equation...

Step 1: Set x = a so that the terms m_1 , m_2 , m_3 , etc. are removed from Equation (2) above. Once those terms are removed then we have the following equation...

$$f(x) = m_0 \dots \text{where} \dots x = a \tag{3}$$

Step 2: Take the derivative of Equation (2) above with respect to x...

$$\frac{\delta f(x)}{\delta x} = m_1 + 2 m_2 (x-a) + 3 m_3 (x-a)^2 + 4 m_4 (x-a)^3 + 5 m_5 (x-a)^4 + \dots$$
(4)

Set x = a so that the terms m_2 , m_3 , m_4 , etc. are removed from Equation (4) above. Once those terms are removed then we have the following equation...

$$\frac{\delta f(x)}{\delta x} = f'(x) = m_1 \quad \dots \text{ where} \dots \quad x = a \tag{5}$$

Step 3: Take the derivative of Equation (4) above with respect to x...

$$\frac{\delta^2 f(x)}{\delta x^2} = 2 m_2 + 6 m_3 (x-a) + 12 m_4 (x-a)^2 + 20 m_5 (x-a)^3 + \dots$$
(6)

Set x = a so that the terms m_3 , m_4 , m_5 , etc. are removed from Equation (6) above. Once those terms are removed then we have the following equation...

$$\frac{\delta^2 f(x)}{\delta x^2} = f''(x) = 2 m_2 \text{ ...such that...} \quad \frac{1}{2} f''(x) = m_2 \text{ ...where...} \quad x = a$$
(7)

Step 4: Take the derivative of Equation (6) above with respect to x...

$$\frac{\delta^3 f(x)}{\delta x^3} = 6 \, m_3 + 24 \, m_4(x-a) + 60 \, m_5(x-a)^2 + 120 \, m_6(x-a)^3 + \dots \tag{8}$$

Set x = a so that the terms m_4 , m_5 , m_6 , etc. are removed from Equation (8) above. Once those terms are removed then we have the following equation...

$$\frac{\delta^3 f(x)}{\delta x^3} = f'''(x) = 6 \, m_3 \, \text{...such that...} \, \frac{1}{6} \, f'''(x) = m_3 \, \text{...where...} \, x = a \tag{9}$$

Step 5: Take the derivative of Equation (8) above with respect to x...

$$\frac{\delta^4 f(x)}{\delta x^4} = 24 \, m_4 + 120 \, m_5 (x-a)^1 + 360 \, m_6 (x-a)^2 + 840 \, m_7 (x-a)^3 + \dots \tag{10}$$

Set x = a so that the terms m_5 , m_6 , m_7 , etc. are removed from Equation (10) above. Once those terms are removed then we have the following equation...

$$\frac{\delta^4 f(x)}{\delta x^4} = f''''(x) = 24 m_4 \text{ ...such that...} \frac{1}{24} f'''(x) = m_4 \text{ ...where...} x = a$$
(11)

Using Equations (3), (5), (7), (9) and (11) above we can rewrite Equation (2) above as...

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{6}f'''(a)(x-a)^3 + \frac{1}{24}f'''(a)(x-a)^4 + \dots$$
(12)

The Solution To Our Hypothetical Problem

Our hypothetical problem equation has terms up to the third order (i.e. x^3). In this case fourth order derivatives and higher are zero and therefore we can ignore them. Our hypothetical problem equation evaluated at the arbitrary point a and the relevant derivatives are...

$$f(a) = 100 - 2a + 4a^2 - 3a^3 | f'(a) = -2 + 8a - 9a^2 | f''(a) = 8 - 18a | f'''(a) = -18$$
(13)

If we set the arbitrary point a to be equal to 2 then we can rewrite Equation (13) above as...

$$f(a) = 88 \quad f'(a) = -22 \quad f''(a) = -28 \quad f'''(a) = -18 \tag{14}$$

Using Equation (14) above and using Equation (12) as our guide then the Taylor Series Expansion for our hypothetical problem is...

$$f(x) = 88 - 22(x - a) - \frac{1}{2}28(x - a)^2 - \frac{1}{6}18(x - a)^3 \text{ ...where... } a = 2$$
(15)

We can rewrite Equation (15) above as...

$$f(x) = 88 - 22(x - 2) - 14(x - 2)^2 - 3(x - 2)^3$$
(16)

We will use Equation (16) above to answer our hypothetical problem questions...

Question 1: What is the value of f(x) when x = 5?

Answer: $f(5) = 88 - 22(5 - 2) - 14(5 - 2)^2 - 3(5 - 2)^3 = -185$

Question 2: What is the value of f(x) when x = -3?

Answer: $f(-3) = 88 - 22(-3-2) - 14(-3-2)^2 - 3(-3-2)^3 = 223$